1 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
saulvalentino7 edited this page 2 months ago


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions ranging from 1.5 to 70 billion specifications to construct, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to release the distilled variations of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes support learning to improve thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. An essential differentiating function is its support knowing (RL) step, which was used to fine-tune the design's responses beyond the standard pre-training and tweak procedure. By including RL, DeepSeek-R1 can adapt better to user feedback and objectives, eventually boosting both significance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) technique, meaning it's geared up to break down intricate queries and reason through them in a detailed manner. This guided thinking process permits the design to produce more accurate, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT abilities, aiming to produce structured responses while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has actually recorded the industry's attention as a versatile text-generation model that can be integrated into different workflows such as agents, sensible reasoning and information analysis jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture enables activation of 37 billion parameters, allowing efficient inference by routing inquiries to the most appropriate professional "clusters." This approach permits the design to concentrate on different problem domains while maintaining total performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking abilities of the main R1 design to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more efficient designs to mimic the habits and reasoning patterns of the larger DeepSeek-R1 model, utilizing it as a teacher model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this design with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent harmful material, and against essential security requirements. At the time of composing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop several guardrails tailored to various use cases and use them to the DeepSeek-R1 model, enhancing user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limit boost, produce a limit increase demand and reach out to your account team.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For instructions, see Set up approvals to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, prevent harmful material, and evaluate models against essential safety requirements. You can carry out precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to examine user inputs and model reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general flow involves the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for reasoning. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the final outcome. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections demonstrate reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, choose Model catalog under Foundation models in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and choose the DeepSeek-R1 design.

The design detail page provides important details about the model's abilities, pricing structure, and execution guidelines. You can find detailed use instructions, including sample API calls and code bits for integration. The model supports various text generation jobs, consisting of content development, code generation, and concern answering, using its reinforcement learning optimization and CoT reasoning abilities. The page also consists of implementation alternatives and licensing details to assist you get going with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, pick Deploy.

You will be prompted to set up the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of instances, go into a variety of instances (between 1-100). 6. For example type, choose your circumstances type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested. Optionally, you can configure sophisticated security and facilities settings, including virtual personal cloud (VPC) networking, service function authorizations, and file encryption settings. For most use cases, the default settings will work well. However, for production releases, you might wish to review these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to start using the model.

When the release is complete, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play area. 8. Choose Open in playground to access an interactive user interface where you can experiment with various triggers and adjust model criteria like temperature level and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal results. For example, content for inference.

This is an outstanding way to explore the design's thinking and text generation abilities before incorporating it into your applications. The play ground supplies immediate feedback, helping you comprehend how the design reacts to different inputs and letting you tweak your triggers for ideal outcomes.

You can quickly test the design in the play ground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run inference using guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to perform reasoning utilizing a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually produced the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, sets up inference specifications, and sends a demand to produce text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML services that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your data, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides two convenient approaches: utilizing the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both techniques to assist you select the technique that best fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The model browser shows available designs, with details like the service provider name and model abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card shows essential details, consisting of:

- Model name - Provider name

  • Task category (for example, Text Generation). Bedrock Ready badge (if appropriate), showing that this design can be registered with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to invoke the model

    5. Choose the design card to see the model details page.

    The model details page consists of the following details:

    - The model name and supplier details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you deploy the model, it's recommended to evaluate the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to continue with release.

    7. For surgiteams.com Endpoint name, utilize the instantly produced name or develop a custom-made one.
  1. For Instance type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the number of circumstances (default: 1). Selecting suitable circumstances types and counts is important for expense and performance optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time inference is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for accuracy. For this design, we highly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to release the model.

    The deployment process can take a number of minutes to complete.

    When deployment is total, your endpoint status will alter to InService. At this point, the design is all set to accept inference requests through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the release is total, you can invoke the model utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To start with DeepSeek-R1 using the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS authorizations and environment setup. The following is a detailed code example that shows how to deploy and utilize DeepSeek-R1 for reasoning programmatically. The code for deploying the model is offered in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To prevent unwanted charges, finish the steps in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you deployed the model utilizing Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace deployments.
  5. In the Managed deployments section, locate the endpoint you want to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the proper deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies construct ingenious services using AWS services and sped up calculate. Currently, he is concentrated on developing strategies for fine-tuning and enhancing the reasoning efficiency of large language models. In his spare time, Vivek delights in treking, watching motion pictures, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about constructing services that help customers accelerate their AI journey and unlock company worth.